If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4(x^2)-255=0
a = 4; b = 0; c = -255;
Δ = b2-4ac
Δ = 02-4·4·(-255)
Δ = 4080
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4080}=\sqrt{16*255}=\sqrt{16}*\sqrt{255}=4\sqrt{255}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{255}}{2*4}=\frac{0-4\sqrt{255}}{8} =-\frac{4\sqrt{255}}{8} =-\frac{\sqrt{255}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{255}}{2*4}=\frac{0+4\sqrt{255}}{8} =\frac{4\sqrt{255}}{8} =\frac{\sqrt{255}}{2} $
| 1/7x+17=22 | | 47-11x=11+7x | | -4=y/7+6 | | 5x-10=-10x+10 | | 9x-4.9x^2=-35 | | n2-3n+8=4 | | (12+h)(h-3)(h)=324 | | 10x+2=½(15x+19) | | 0.25y-3=-15 | | 2(-3x+5)=4x-6 | | 42-4x=10+12x | | 9x-4.9x^2=35 | | 42x2-x-30=0 | | 2x+2=11-2x+25 | | 5X-3+6x-6=180 | | 14x-4.9x^2=35 | | -3(-7w+8)-3w=3(w-4)-3 | | 70+22+y=180 | | -3(x-19)=-39 | | +-2x=6x-10x+8 | | 17)−40+2n=4n−8(n+8) | | +-2x=6x/10x+8 | | 200=63-x | | 20x÷5+8=12 | | 2x-5(x-4)=-3+2x-2 | | 81.6=8(m+2.1) | | 9/8x=32 | | 4-2(x-6)=12 | | (3x+7)=(x+35) | | 1/2x+120=240 | | 2x-7=+9 | | 12x-23=5x-54 |